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What the training of a neuronal network optimizes
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In the study a model of training of neuronal networks built of integrate-and-fire neurons is investigated.
Neurons are assembled into complex networks of Watts-Strogatz type. Every neuronal network contains a
single receptor neuron. The receptor neuron, stimulated by an external signal, evokes spikes in equal time
intervals. The spikes generated by the receptor neuron induce subsequent activity of a whole network. The
depolarization signals, traveling the network, modify synaptic couplings according to a kick-and-delay rule,
whose process is termed “training.” It is shown that the training decreases the mean length of paths along
which a depolarization signal is transmitted from the receptor neuron. Consequently, the training also decreases
the reaction time and the energy expense necessary for the network to react to the external stimulus. It is shown
that the initial distribution of synaptic couplings crucially determines the performance of trained networks.

DOI: 10.1103/PhysRevE.76.031905

INTRODUCTION

An important class of phenomena, related to applications
of practical relevance, involves the transmission of some sig-
nal through excitatory networks. In an excitatory network a
node (bond) is open for transport, provided that the ampli-
tude of a signal applied to it exceeds a threshold value and is
closed otherwise. Problems of a similar kind arise in net-
works of diodes [1], flow of Bingham plastic [2], or foam [3]
in porous media and dielectric breakdown [4]. An important
area of application of excitatory networks is also modeling
neuronal networks, in which case additional degrees of free-
dom are assigned to the network nodes [5]. The latter field of
application of excitatory networks has provided especially
important results concerning synchronization of neurons, the
origin of memory, and pathologies such as epileptic seizures
or Parkinson disease, models of learning and recognition,
etc. [6].

One of the most exciting but not fully understood proper-
ties of neuronal networks is their ability to adjust their re-
sponse to varied stimuli. Generally, signals traveling through
a neuronal network can modify the couplings between
neurons—the conductance of a synapse changes depending
on the history of the depolarization of the presynaptic and
postsynaptic neurons [7]. This process, termed synaptic plas-
ticity, is believed to be responsible, for example, for the ani-
mals ability to learn and recognize spatial or temporal exter-
nal signals [8]. While it has been shown [9] that under some
assumptions about the network topology spatiotemporal in-
formation can indeed be coded in the activity patterns of the
neurons, it is an open question what changes in the neural
network properties, induced by synaptic plasticity, facilitate
learning and recognition in a general case.

Depolarization of a neuron can eventually induce the sub-
sequent depolarization of neighboring neurons. Conse-
quently, a neuronal network acts as a depolarization transfer-
ring network. The ability to transfer the depolarization signal
is the most basic property of the neuronal networks, which
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supports the above mentioned high-level tasks of learning
and recognition.

In the present paper I study the geometry of the paths
along which depolarization is transferred through neuronal
networks. The geometric characteristics (e.g., numerous frac-
tal exponents [10]) of signal transferring paths are often used
to distinguish between different transport models, even if the
models are defined on networks with fixed topology. I show
that the primary effect of the synaptic plasticity is the change
of the geometry of the depolarization paths. During contin-
ued stimulation a spatial pattern of high-conductivity con-
nections between neurons develops, which supports the
transmission of the depolarization signal. Importantly, the
performance of a neuronal network after a period of stimu-
lation strongly depends on the initial distribution of the syn-
aptic couplings.

MODEL

In the model of an integrate-and-fire neuron [11], used in
the present study, the change dV;(¢) of the potential V(z)
< th of the ith neuron during the time df is given by

avi(t) =—dilVi(r) - V?ase]/')’i + > giiot—t;5— tjD)’ (1)

JjeN;

where ; is a constant and V"™ is the resting potential. The
last term of the right-hand side of Eq. (1) represents the sum
of excitatory postsynaptic potentials (EPSPs). EPSP is the
change of V,(¢) induced by a spike generated by the jth
neighbor contained within the neighborhood N; of the ith
neuron. If the coupling g;; is nonzero then the neuron i re-
ceives a spike at time ¢ after the neuron j has fired at time
tj,5=t—tf, where tjl-) is a delay time. If Vi(r) crosses the
threshold potential V}h (if no noise is present it is possible
only provided that at least one of the neighbors of the ith
neuron has fired) a spike is generated by the ith neuron and
Vi(1)is reset to V™= V®¢_ A neuron i, which has fired is by
definition active for time ¢ (for the time necessary to trans-
mit depolarization signal to the neighboring neurons). After
generating a spike a neuron enters a refractory period for a
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time tf I have assumed that during the refractory period a
neuron neither integrates EPSPs induced by spikes arriving
to its synapses nor generates spikes.

The coupling constants g;; alter in response to spikes ar-
riving to the synapses, whose process is termed synaptic
plasticity [7]. Synaptic plasticity occurs across many time
scales, from milliseconds for short-time enhancement to days
or longer for long-term potentiation, believed to be respon-
sible for the ability to learn. In the latter case depolarization
of both presynaptic and postsynaptic neurons is necessary to
alter the synaptic coupling, while for the short-time enhance-
ment to occur it is sufficient that a presynaptic neuron depo-
larizes [12]. In the present study I consider long-term synap-
tic potentiation only. A simplest model, which qualitatively
reproduces long-term potentiation-related alternations of the
synaptic couplings is a kick and delay model as follows:

dg;j=—dta(g;—gp) + Ogr—g;) Kot — 1), ()

where « is a decay constant and gg is a base value of g;;. If
a spike evoked by a presynaptic neuron at time #g has led to
the depolarization of the postsynaptic neuron and if g;; is less
than the maximal allowed value g7 of g;; [this condition is
represented by the Heaviside function ®(g;—g;;)] then g;; is
increased by K. For ease of notation I use the term “training”
throughout the paper to denote stimulation of the network by
spikes generated by the receptor neuron S, followed by ap-
propriate modifications of the synaptic couplings g;;. That
process is not training in a strict sense, because the network
is not taught to recognize any spatial or temporal patterns. I
have tested the influence of varied initial distribution of the
synaptic couplings on the training process: all g;<Vy,
—Vhases all g;;> Vip—Viaees some fraction of g;;> Vip—Viyee
and the other g;; <V~ Viye-

The neurons are assembled and form a complex network
of Watts-Strogatz type [13]. The Watts-Strogatz network has
been selected as a model of the topology of a neuronal net-
work, because it is an example of a complex network type,
characterized by small-world property, observed also for net-
works of real neurons [14]. T have assumed that every neuron
is connected with two of its nearest neighbors. Then I have
created additional connections between every neuron and
randomly sampled number of distinct neurons. In contrast to
the Watts-Strogatz model, nonlocal connections are not the
result of a rewiring procedure. I have further assumed that
the neuronal network contains a single “receptor” neuron S,
which sends spikes in equal time intervals in the reaction to
some external stimulus. Because neurons act according to the
rule “all-or-nothing,” the strength of the external stimulus
can be coded in the frequency of firing of the receptor neuron
(if the number of receptor neurons is larger than 1, then the
strength of the external stimulus can be also coded in the
number of firing receptor neurons). Here I am not concerning
the influence of the strength of the stimulus on the activity of
the network and thus the firing frequency of the receptor
neuron is fixed and equal to one spike per unit of time. Under
some circumstances (e.g., low network connectivity or suffi-
ciently small couplings g;) it is possible that the depolariza-
tion signal will not be received by some neurons. Here I
chose the network parameters such that transmission failures
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FIG. 1. Final state of a trained neural network depends on the
values of the parameters « and K in Eq. (2).

do not occur. It is a problem of recent interest how a neu-
ronal networks characteristics influence its ability to transfer
a depolarization signal [15]. T have assumed that the network
has reacted to the stimulus if all neurons have received the
depolarization signal. Consequently, the time necessary to
propagate the depolarization signal through the entire net-
work depends on the number of neurons and other network
characteristics. For a network, which has generated a reac-
tion to the stimulus, I have measured the average time 74
necessary to generate the reaction. The initial spike, which
induces the activity of the network, is sent by S at #=0. The
initial conditions are V,<(t=0)=V‘i3ase for all i. Additionally, I
have also measured the mean length L of signal transferring
paths, connecting S to every other neuron of the network.
The length of the signal transferring paths is defined in an
iterative manner as follows. A neuron, which has fired after
receiving a spike from, S, is at the unit length from S. A
neuron, which has not yet fired and fires after receiving a
spike from a neuron being at a length n from S, is at the
length n+1 from S.

The average values of L (denoted (L)) and 74 (denoted
(t4)) were calculated for 1000 realizations of neuronal net-
works and were determined as the functions of the number N
of the neurons.

In the simulations T have assumed that V?*¢=V, . Vi

=Vie» VI=Vy, vi= 7, t° =1, and R=1 for all i. Typical val-
ues of these constants, used during simulations were V.
=0.8, Vi €(0.5,0.8), Vy,=1.0, y=20.0, 1,=0.05, and 1y
€(0.1,0.5). Also the basal properties of the synapses were
fixed: gg=0.1 and g;=0.3. The topology of the network was
fixed to be Watts-Strogatz-type with the mean number of

receiving synapses in a range from 4 to 20.

RESULTS

The training process modifies the distribution of the syn-
aptic couplings g;;. The training parameters K and «, used in
Eq. (2), determine the type of the distribution of g;; values
for the trained networks. Depending on these values (Fig. 1)
g;;’s are distributed either only around g (supersensitive net-
works), only around g5 (subsensitive networks), or around g,
and gy (binomial distribution for optimally trained net-
works).
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FIG. 2. The mean length (L) of depolarization paths plotted vs
the logarithm of the number N of neurons for initial values of syn-
aptic couplings g;;(t=0) > Vi, — Vi (squares) and optimally trained
networks starting from these initial values (circles). The statistical
error bars are also shown in the figure. The results obtained for ¢
=0 are equivalent to the results for supersensitive networks because
in both cases the distribution of g;;’s is the same.

If the value of g is selected such that Vy,..+g7> Vy, (e.g.,
g7=0.3, used in the simulations) the geometry of the depo-
larization paths of supersensitive networks is the same as the
geometry of the shortest paths in the small-world networks,
for which (L)~In N (Fig. 2). In that case a single spike
generated by any neuron is sufficient to excite all the neigh-
bors of this neuron and thus the depolarization paths must be
equivalent to the shortest paths. Mean reaction time (f4) is a
linear function of (L) [{t,)=(L)tp].

In the case of subsensitive networks all the values of g;;
decay to gg. If Vi o+ 85 <V, €very neuron of a subsensitive
network must necessarily receive at least two spikes to gen-
erate its own spike and because of that the depolarization
paths are different from the shortest paths (Fig. 3). In fact,
for the present implementation of /F neurons, the depen-
dence of (L) on N is nonmonotonic and nonuniversal in this
regime (Fig. 4). To explain the reasons of this phenomena I
have examined the distribution of the depolarization times
and the distances from the receptor neuron. Nonmonotonic
behavior of (L) occurs whenever abrupt changes of the mean
depolarization time are observed. For example, in my simu-
lations most of the networks built of 2000 neurons reacted to
the stimulus after time £~ 3.0 (i.e., after the receptor neuron
has evoked three spikes). Most of the networks built of 4000
reacted after time 7r=~7.0. Finally, for networks with 2880
neurons the highest dispersion of the depolarization times
was observed: a similar number of networks reacted after ¢
~7.0 and t=3.0, which in turn induced higher dispersion of
the distances and higher (L) than for networks with N
=2000 and N=4000. For subsensitive networks mean reac-
tion time (74) is an increasing but nonlinear function of N and
there is no functional dependence of {z4) on (L).

For intermediate values of & and K bimodal distribution
of g;; develops during the training process. In my experi-
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FIG. 3. In a subsensitive network depolarization paths must be
different from the shortest paths. In a subsensitive network a single
spike sent by a receptor neuron S is not sufficient to depolarize
neurons 1 and 2. These neurons can eventually generate spikes after
receiving a second spike from S. Spikes sent from neurons 1 and 2
to neuron 3 depolarize neuron 3, but a single spike sent from neu-
rons 2 to 4 is not sufficient to depolarize neuron 4. However, depo-
larization of neuron 3 integrated in neuron 4 with earlier excitation
from neuron 2 can depolarize neuron 4. The depolarization path
from S to neuron 4 is drawn with a bold line. The length of this path
is equal to 3 in contrast to the shortest path from S to neuron 4,
whose length is equal only to 2.
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ments most of the synaptic couplings decayed to gp, while
typically not more than 30% of g;; were distributed around
g7- I have measured the probability P(k) that a neuron has k
incoming synapses for which g;;>Vi,—Vi,e. In all cases
P(k) has had a single maximum for k=1 and decayed for
larger k. The probability P(k=0) was always almost equal to
0 for trained networks (typically within 2% tolerance), even
if initially P(k=0)=1, that is, high conductivity synaptic
connections were developed for every neuron during the
training process. I have also found that after the training
depolarization signal propagated only through synapses for
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FIG. 4. The mean length (L) of depolarization paths plotted vs
the logarithm of the number N of neurons for initial values of syn-
aptic couplings g;;(t=0) <V~ Vpe (squares) and optimally trained
networks starting from these initial values (circles). The results ob-
tained for r=0 are equivalent to the results for subsensitive net-
works because in both cases the distribution of g;;’s is the same.
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FIG. 5. The mean length (L) of depolarization paths plotted vs
the logarithm of the number N of neurons for networks with 30%
8;j(t=0)> Vi = Vi before (squares) and after (circles) training.

which g;;> Vi — V. Consequently, only some fraction (for
example, 30% for K=0.01 and a=0.01, Vi .=V5.=0.8, 1z
=0.4) of the initial synaptic connections participated in the
propagation of the depolarization signal, while other connec-
tions were depreciated. In contrast, a depolarization signal in
nontrained networks can propagate through any synapses,
independently on the synaptic couplings.

I have found that the geometry of depolarization paths
strongly depends on the initial distribution of g;;’s. The val-
ues of (L) calculated for trained networks are plotted vs the
number of neurons N in Figs. 2, 4, and 5. After the training
one has always (r4)=(L)t;, which is another effect of the
existence of high conductivity synapses (g;;> Viy— Viase) for
every neuron. The training process makes the depolarization
paths more compact and decreases the reaction time.

Finally, I have checked how the properties of the depolar-
ization paths change if the initial spike in a trained network
is sent from a randomly selected neuron instead of the recep-
tor neuron S. The results presented in Table I indicate that the
mean length of the depolarization paths and the mean reac-
tion time are minimal if the spikes initializing the activity of
the network are sent from the receptor neuron S: the geom-
etry of the depolarization paths is optimized for the transmis-
sion broadcast from S.
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DISCUSSION

Typically the stimulation of a neuronal network causes
some form of reaction. If it is assumed that the neuronal
network contains “reaction” neurons (e.g., motoneurons) ini-
tiating the reaction aimed at terminating the external stimu-
lus, then the short reaction time and short depolarization
paths are advantageous. Moreover, such “reaction” neurons
by possible action of inhibitory synapses may eventually
suppress activity of the network after the external stimulation
has been terminated. In such a case the changes induced by
the training process reduce the energy expense necessary to
react to the stimulus.

Under some circumstances the training process can lead
to subsensitive or supersensitive networks. Neither of them is
optimal, because the former requires too much time to react,
while the latter, when operating, makes use of unnecessarily
too great a number of synaptic connections. In an optimally
trained network a spatial pattern of “strong” synaptic connec-
tions develops.

The final geometry of the depolarization paths is, how-
ever, strongly dependent on the initial conditions. In a sense,
the initial values of the synaptic couplings g;; are “geneti-
cally” determined, while the synaptic plasticity reflects the
“lifetime experience” or learning. A bad genetic inheritance
constitutes a fundamental barrier for future success. The glo-
bally optimal solution for the problem of the shortest paths
within the complex network is the one with the mean length
of the paths proportional to the logarithm of the number of
the network nodes. In the best case the initial state of a
neuronal network involves all possible synaptic couplings
being strong. After training these associations are not lost
and the network operates in the globally optimal manner. In
the worst case the neuronal networks contain some fraction
of possibly bad associations (strong couplings assigned ran-
domly to the synapses) and such networks are overperformed
even by networks which initially contain no strong associa-
tions. In both cases the networks operate, however, far from
the globally optimal shortest paths regime.

One may speculate that, like in optimization problems
(e.g., Monte Carlo or simulated annealing) some level of
noise may eventually drive the system towards the global
optimum (the noise in a neuronal network can be simulated
by allowing the neurons to generate spikes randomly, with-
out any external excitation). I have checked that in the case
of trained neuronal networks even a high level of noise does

TABLE 1. Mean values (standard errors) of the lengths of depolarization paths (L) and reaction times (74)
calculated for an external signal stimulating a receptor neuron and a random neuron. The results were
obtained for trained neuronal networks built of 1000 neurons.

External signal stimulating
a receptor neuron

External signal stimulating
a random neuron

Initial conditions (L) (t4) (L) (ta)

all g,,(1=0) < Viy— Vi 5.97 (0.08) 0.30 (0.004) 7.6 (0.2) 2.0 (0.16)
30% g,(1=0)> Vip—Viase 5.90 (0.08) 0.30 (0.004) 7.8 (0.2) 2.4 (0.11)
all g,,(1=0)> Viy— Vigse 3.80 (0.02) 0.19 (0.001) 6.8 (0.2) 3.0 (0.18)
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FIG. 6. The mean length (L) plotted vs the logarithm of the
number of neurons N for trained (open symbols) and nontrained
(solid symbols) neuronal networks in which neurons were allowed
to spontaneously generate spikes with probability 0.2, without any
external stimulation. The results plotted in the figure were obtained
for different initial conditions g;;(t=0): all g;;(1=0) < Vi~ Vs (tri-
angles); 30% g;(t=0)>Vi,—Viuee (squares); all g;(1=0)>Vy,
— Viase (circles).

not fully diminish the results of unequal initial conditions.
Moreover, undesirable effects of noise are decreased advan-
tages of training (comparing nontrained and trained net-
works) and driving the system away from the global opti-
mum (Fig. 6).

In the model of a neuronal network considered in the
present study only one receptor neuron was present. Thus the
information passed to the network can be coded only in the
frequency pattern of the external stimulation. The network
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adjusts its answer to the stimulus in an obvious way: the
bursts of activity are more frequent for more frequent stimu-
lation. It is not, however, an advantage of training, because
nontrained networks are actually also able to code external
temporal information in the frequency of activity. In a more
general case there can be multiple receptor neurons in a net-
work and different depolarization signals can “interact” with
one another.

In the paper the effects of training of networks built of
integer-and-fire neurons were studied. The results were ob-
tained for a simplified model of neuronal dynamics. The
model of integer-and-fire neurons has only one compartment
(the membrane potential), the simplest description of the
synaptic dynamics (sum of delta functions) was used, and
only one form of synaptic plasticity was considered. Thus I
am not able to confirm that these results are general for any
model of neuronal network.

However, the changes induced by the training are reason-
able and can be beneficial. For the model studied I have
shown that long-term synaptic plasticity optimizes the time
of reaction and length of depolarization paths. First, optimiz-
ing these quantities can eventually increase the fitness of an
organism to the environmental conditions. Second, it has
been recently shown that the transmission of the depolariza-
tion signal in living neuronal networks can be described in
terms of a branching process [16] and that the network op-
erates optimally for a critical (equal to one) value of branch-
ing parameter, which is related to the number of synaptic
connections used to transmit a depolarization signal. Because
the long-term synaptic plasticity tends to decrease the num-
ber of “strong” synaptic connections it can possibly be the
mechanism responsible for driving the network towards the
critical state.
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